
i
i

i
i

i
i

i
i

Malaysian Journal of Mathematical Sciences 10(S) February: 409–421 (2016)
Special Issue: The 3rd International Conference on Mathematical Applications in
Engineering 2014 (ICMAE’14)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Haar Spectrum of Bent Boolean Functions

H.M. Rafiq1 and M.U. Siddiqi∗1

1Department of Electrical & Computer Engineering, Faculty of
Engineering, International Islamic University Malaysia (IIUM)

E-mail: umarsiddiqi@iium.edu.my
∗ Corresponding author

ABSTRACT

Bent Boolean functions play a very significant role in the design of strong
symmetric cryptosystems. In this paper, we present an analysis of Bent
functions in the Haar domain. We first present a brief overview of Bent
Boolean functions and then derive expressions for the Haar spectrum of
Bent functions. The Haar spectral coefficients of Bent functions are given
in two ways namely; in terms of sub-intervals over the entire spectrum,
as well as, individual spectral coefficients. Finally, we conclude the paper
with a summary of findings and suggestions for further work for utilizing
the results for design of secure cryptosystems.

Keywords: Cryptographic Boolean functions, Bent functions, Haar–
transform, Walsh transform, Rademacher functions, Walsh
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1. Introduction

Boolean functions have been of great interest in many fields of engineering
and science, especially in cryptography (Thomas and Pantelimon, 2009, Carlet,
2010). They play a significant role in the security of conventional cryptographic
systems for both block ciphers as well as stream ciphers. They can be viewed
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as component parts of S-box (Thomas and Pantelimon, 2009, Neiderreiter,
2002) in a block cipher and are used in pseudo-random generators of stream
ciphers as combining or filtering functions (Carlet, 2010, Read, 2007, Kui and
Kwangjo, 2005, Courtois and Meier, 2003). Bent functions specifically, serve as
a benchmark for high nonlinearity which is one of the most desirable properties
for secure cryptographic functions. They can as well be synthesized to produce
highly nonlinear functions. They have been defined, generalized, and presented
in terms of the Walsh transform (Thomas and Pantelimon, 2009, Carlet, 2010,
Zhang and Zheng, 1995).

In this paper we focus on the spectral transforms as methods of representa-
tion for the cryptographic Boolean functions. We look into the analogy between
the Walsh and the Haar transforms which are known as fast Fourier-like trans-
forms (Karpovsky and Astola, 2008, Thornton and Drechsler, 2001). With
the advancement in technology over the years and compact methods of imple-
mentations, the Haar transform has progressively penetrated different fields of
engineering and science, proving to be of significant use, and brought about
attraction for further explorations on its applications (Khuri, 1997, Stanković
and Falkowski, 2003, Rafiq and Siddiqi, 2009). The aim of this paper is to ex-
plore the Bent functions from the Haar domain perspective. In the process, we
derive the general Haar spectral coefficients′ representation in terms of both:
coefficients′ sub-intervals within the Haar spectrum, as well as, the individual
spectral coefficients. Throughout the paper, we consider the Haar connection
to Walsh functions in different orderings that include Strict-Sequency, Paley,
and Hadamard orderings derived through Rademacher functions.

The paper is organized as follows. Section 2 presents an overview of Boolean
functions including the spectral transform methods. The section also covers
some of the known results to be employed in the later sections in addition
to the Walsh definition of Bent functions. In section 3, we derive the Haar
representation of Bent functions with two approaches based on representation
of spectral coefficients′ sub-intervals as well as individual coefficients. Finally,
in section 4, we present the conclusion of the paper and discussion on future
work.

2. Overview

2.1 Boolean Functions

Boolean functions maps n binary inputs to a single binary output. More
formally, this can be presented as follows (Thomas and Pantelimon, 2009,
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Carlet, 2010):

f : Fn
2 → F2 Maps (x1, . . . , xn) ∈ Fn

2 7→ f(x) ∈ F2.

Such a function f is called a Boolean function of n variables. A Boolean
function takes an n–dimensional vector(x = (x1, . . . , xn) , xi ∈ F2) over a two–
element field as its domain, and outputs a single element from the same field as
its range(f(x)). The set of all Boolean functions is denoted by Bn. Any f ∈ Bn

has a unique representation in each of the following forms (Carlet, 2010):

• The ordered tuple Tf =
(
f(x(0)), f(x(1)), . . . , f(x(2

n−1))
)
is called the

binary truth table of f(f taking values from the two–element set {0, 1}).
The truth table gives the function’s outputs for all the possible 2n input
combinations, where x(0) = (0, . . . , 0) (the all–zeroes vector), x(2

n−1) =
(1, . . . , 1)(the all–ones vector), and generally x(k) as the binary vector
representation of the integer k, for 0 ≤ k ≤ 2n − 1. The relationship
between x and k is simply given by k =

∑n
i=1 2

n−ixi.

• Sometimes instead of Tf , it may be more convenient to use the real valued
function of f , which is called the sign function ξ or the polarity truth table
(ξ takes values from the set {1,−1}). It is defined as ξ(x) = (−1)f(x) ≡
1 − 2f(x), ∀x ∈ Fn

2 . The truth table of the sign function is called the
sequence of f .

• The polynomial representation (ANF); the algebraic normal formal can
be written uniquely as a sum (XOR) of products (AND):

f (x) = a0 ⊕ a1x1 ⊕ · · · ⊕ a1x1 ⊕ a12x1x2 ⊕ · · · ⊕ a12···nx1x2 · · ·xn
where ai, xi ∈ F2.

The highest number of variables in the product terms of ANF gives the
degree of f and is denoted by deg(f). For other representation such as NNF
can be found in (Thomas and Pantelimon, 2009, Carlet, 2010).

The weight of a function is defined as the number of nonzero entries in Tf
and is denoted by w(f). If the weight of a function is 2n−1, that is the numbers
of 0 ′s and 1 ′s are equal, then the function is called balanced.

Let f, g ∈ Bn. Then the distance between f and g is the distance between
Tf and Tg on F2n

2 , which is denoted by d(f, g) and given by d(f, g) = w(f⊕g).

Linear and Affine Boolean Functions: A linear Boolean function,
selected by ω ∈ Fn

2 is denoted by Lω with the general expression Lω =
ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ ωnxn.
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Any function of the form f = c⊕Lω where c ∈ F2 is called Affine function.
The set of affine functions contain all the linear functions.

2.2 Spectral Transforms

In this section we look at the main spectral transforms considered suitable
for representation of Boolean functions. The two spectral transforms under
context are the Walsh and Haar transforms. We also present some of the
existing results that will be employed in the subsequent sections of the paper.

Throughout this paper, the following notations and abbreviations will be
employed:

• MY : The Y spectral transform ofM (Y is either Walsh(W ) or Haar(H)).

• (WH, WS, WP): Walsh-Hadamard, Walsh-Sequency, Walsh-Paley order-
ings respectively.

• ~yj : The j-th row (Y function) in the respective transform matrix.

• Yj · f : The inner dot product between the elements of Y and f .

Walsh-Hadamard Transform: The Walsh-Hadamard transform (ξWH) of
a function ξ on Fn

2 is given by (Thomas and Pantelimon, 2009, Carlet, 2010)

ξWH (u) =
∑
x∈Fn

2

(−1)f(x)⊕x·u ≡ WHu(x) · ξ(x). (1)

An equivalent representation of the transform in matrix form is (Thornton
and Drechsler, 2001):

ξW = [Wn] · [ξ]t (2)

where [Wn] = [~wj ] is a 2n×2n Walsh transform matrix whose rows (j ∈ [0, 2n ))

consists of the Walsh functions (~wj), and [ξ]
t is a column vector of ξ.

Haar Functions: The set of Haar functions Hl
q(simplyHj), forms a com-

plete set of orthogonal rectangular basis functions (Karpovsky and Astola,
2008, Khuri, 1997). They are defined on the interval [0, 2n ) as un–normalized
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taking the values of 0 and ±1 as follows:

H0
0(x) = H0(x) = 1, ∀x ∈ [0, 2n )

Hj(x) =

 1, (2q) · 2n−l−1 ≤ x < (2q + 1) · 2n−l−1
−1, (2q + 1) · 2n−l−1 ≤ x < (2q + 2) · 2n−l−1
0, otherwise

, (3)

where: l and q are degree and order of the Haar functions respectively, with
j = 2l + q (for j ≥ 1) and for each value of l = 0, 1, . . . , n − 1, we have q =
0, 1, . . . , 2l − 1.

Haar Transform: The Haar transform (ξH) of ξ is defined by (Karpovsky
and Astola, 2008, Khuri, 1997):

ξH(j) =
2n−1∑
x=0

Hl
q(x) · ξ(x) ≡

∑
x

Hj(x) · ξ(x). (4)

Equivalently in matrix form as (Thornton and Drechsler, 2001, Rafiq and
Siddiqi, 2009):

ξH = [Hn] · [ξ]t (5)

where: [Hn] =
[
~Hj

]
is a 2n × 2n Haar transform matrix whose rows consist of

Haar functions (Hj ’s).

2.3 Known Results

Definition 2.1. (Thomas and Pantelimon, 2009, Carlet, 2010)Bent func-
tion: An n–variable Boolean function ξ (resp. f) is said to be a Bent Boolean
function if its Walsh spectrum satisfies the following condition:

ξW (u) =Wu(x) · ξ(x) = ±2
n
2 (resp. fW (u) =Wu(x) · f(x) = ±2

n
2−1).

The Bent functions exist only for even number of variables and they are the
furthest from the affine functions.

The following three lemmas (Lemma 2.1, 2.2, and 2.3) were presented by
(Karpovsky and Astola, 2008).

Lemma 2.1. Rademacher functions Rs, as subset of Walsh-Paley functions
WP←−ω (with index’s (ω) weight equals 1):

Rs(x) =WP2s−1(x) = (−1)xs−1 (s = 1, ..., n)
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where: xs, ωs are determined by the binary expansions of
←
x and

←
ω (Paley

in bit-reverse)

←
x=

n−1∑
s=0

xs2
n−1−s;

←
ω=

n−1∑
s=0

ωs2
n−1−s; WP←

ω
(x) = (−1)

∑n−1
s=0 ωn−1−sxs

with binary code arguments as: x = (x0, . . . , xn−1) and ω = (ω0, . . . , ωn−1).

Lemma 2.2. Relationship between the Haar functions Hq
l (x) and the Rade–

macher functions Rs(x) through Walsh-Paley functions:

Hq
l (x) =

{
Rl+1, x ∈

[
q · 2n−l, (q + 1) · 2n−l

)
0, otherwise , l ∈ [0, n ) ; q ∈

[
0, 2l

)
.

Lemma 2.3. Rademacher functions Rs(x), as subset of Walsh-Hadamard func-
tions WHω in connection to Paley-ordering:

Rs(x) =WH2n−s(x) = (−1)xs−1 (s = 1, . . . , n)

where: xs, ωs are determined by the binary expansions of x and ω

x =

n−1∑
s=0

xs2
s; ω =

n−1∑
s=0

ωs2
s; WHω(x) = (−1)

∑n−1
s=0 ωsxs

with binary code arguments as: x = (x0, . . . , xn−1) and ω = (ω0, . . . , ωn−1).

Lemma 2.4. The relationship between the Haar and Walsh sub-matrices is
defined by (Falkowski and Rahardja, 1996, Fino, 1972):[

SH l
2n
]
= 2−(l−1) · [WS2l−1 ] · [P2l−1 ] ·

[
SWSl

2n
]

(l = 1, . . . , n)

where:[
SWSl

2n
]

is a 2l−1 × 2n Walsh sub-matrix,[
SH l

2n
]
: The Haar sub-matrix (2l−1 × 2n),

[WS2l−1 ] : Walsh matrix in sequency order (2l−1 × 2l−1), the transform
matrix between the two spectral domains for the respective
sub-intervals,

[P2l−1 ] : the permutation matrix (2l−1 × 2l−1) in the following form 0 · · · 1
...

. . .
...

1 · · · 0

 with l = 1, 2, . . . , n.

Lemma 2.5. The relationship between the Walsh functions in different order-
ings (WP,WS, and WH) is given through Rademacher functions by (Kar-
povsky and Astola, 2008, Falkowski and Sasao, 2005):

WP 2l ≡WH2n−(l+1) ≡WS2l+1−1
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3. Haar Transform of Bent Functions

This section presents mathematical derivation of Haar transform of Bent
functions. The first sub-section looks into the sub-intervals of Haar spectral
coefficients while the second sub-section covers the individual spectral coeffi-
cients.

3.1 Spectral Coefficients within the Sub-Intervals

The sub-intervals under context are defined based on the respective degrees
(l) of the Haar functions as

[
2l, 2l+1 − 1

]
. The following proposition is the

extension and generalization of lemmas 2.2, 2.3 and 2.5 over the whole spectral
interval domain ( [0, 2n )).

Proposition 3.1. The sum of Haar functions for a given degree (l) over the
respective orders (q) results into a Walsh function:

∑
q

H2l+q =

 WP2l , Walsh in Paley Ordering
WH2n−(l+1) , Walsh in Hadamard Ordering
WS2l+1−1, Walsh in Sequency Ordering

Proof.

∑
q

H2l+q =

2l−1∑
q=0

H2l+q(x) = H2l(x) +H2l+1(x) + · · ·+H2l+1−1(x)

≡
[
Rl+1(0), Rl+1(1), . . . , Rl+1(2

n−l − 1), 0, . . . , 0
]
+[

0, . . . , 0, Rl+1(2
n−l), , . . . , Rl+1(2

n−l+1 − 1), 0, . . . , 0
]
+ · · ·

+
[
0, . . . , 0, Rl+1(2

n − 2n−l), , . . . , Rl+1(2
n − 1)

]
(Lemma 2.2)

≡ [Rl+1(0), Rl+1(1), . . . , Rl+1(2
n − 1)]

≡ Rl+1(x)

≡

 WP 2l

WH2n−(l+1)

WS2l+1−1

(Lemma 2.1 2.3 and 2.5)

Note: for the Walsh-Sequency function, the function’s row (2l+1 − 1) rep-
resents the number of sign changes between positive-ones and negative-ones,
which is given by the relation (2 · 2n

2n−l − 1).

Malaysian Journal of Mathematical Sciences 415
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Theorem 3.1. Let f be a Bent Boolean function (ξ, its corresponding sign
function), then the sum of its Haar spectral coefficients fH (ξH , corresponding
polarity form) over the interval 2l ≤ j < 2l+1 is given by:∑

j

fH(j) = ±2n
2−1 or

∑
j

ξH = ±2n
2

Proof. ∑
j

fH(j) = fH(2l) + · · ·+ fH(2l+1 − 1)

=
∑
x

H2l(x) · f(x) + · · ·+
∑
x

H2l+1−1(x) · f(x)

≡

2l+1−1∑
j=2l

Hj

 · f
≡

(∑
q

H2l+q

)
· f

=

 WP 2l(x) · f(x)
WH2n−(l+1) · f(x)
WS2l+1−1 · f(x)

(Proposition 3.1)

=


fWP (2

l)
fWH(2n−(l+1))
fWS(2

l+1 − 1)
(Walsh transform of f)

= ±2n
2−1 (Definition 2.1)

For the case of the sign function (ξ), the arguments are straight forward as
one employs it in place of f .

Example 3.1. Consider the Bent function ξ with polarity truth table, [1,−1,
−1, 1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1], then its Haar and Walsh spectral trans-
forms are given in the table below (see Table 1), where the distribution and
relations between the spectral coefficients are obvious:

Note that, the columns from left to right in Table 1 represents: the input
variable, the sign function, the Walsh spectrum in order (Hadamard, Paley,
and Sequency), and the Haar spectrum respectively.
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Table 1: Haar and Walsh Spectrums

x ξ(x) ξWH(x) ξWP (x) ξWS(x) ξH(x)

0 1 4 4 4 4
1 -1 4 -4 -4 -4
2 -1 4 -4 4 0
3 1 4 4 -4 -4
4 1 -4 4 -4 0
5 1 4 4 -4 4
6 -1 -4 -4 4 0
7 -1 4 -4 4 0
8 1 -4 4 4 2
9 -1 -4 -4 4 -2
10 1 4 4 4 0
11 -1 4 -4 4 0
12 1 4 4 4 2
13 1 -4 4 -4 2
14 1 -4 4 -4 0
15 1 4 4 4 0

3.2 Individual Spectral Coefficients

We approach the individual spectral coefficients through the relationship
between the Haar and Walsh sub-matrices using Lemma 2.4. The derivation
gives the relationship between each Haar spectral coefficient of Bent function
and its Walsh counterpart (in Sequency ordering).

Proposition 3.2. Multiplying a sub-matrix of a transform matrix by a function
gives spectral coefficients corresponding to the rows of the sub-matrix:

Haar:
[
SH l

2n
]
· [ξ]t = [ξH(x)]

t or Walsh:
[
SWSl

2n

]
· [ξ]t = [ξWS(x)]

t

where: x ∈
[
2l−1, 2l

)
.

Proof. The proof of the proposition is obvious as, each sub-matrix corresponds
to the rows (2l−1 ≤ j ≤ 2l − 1) of the respective main transform matrix, and in
turn these rows represent the corresponding Haar/Walsh function to be mul-
tiplied by the given Boolean function, as well as, each row from a transform
matrix produces a corresponding row in a column vector representing the spec-
trum.
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Now, multiplying each side of the equation in Lemma 2.4 by a Bent sequence
[ξ]t and using Proposition 3.2 gives:[
SH l

2n
]
· [ξ]t = 2−(l−1) · [WS2l−1 ] · [P2l−1 ] ·

[
SWSl

2n

]
· [ξ]t (l = 1, . . . , n)

[ξH(x)]
t
= 2−(l−1) · [WS2l−1 ] · [P2l−1 ] ·

([
SWSl

2n

]
· [ξ]t

)
(x ∈

[
2l−1, 2l

)
[ξH(x)]

t
= 2−(l−1) · [WS2l−1 ] · [P2l−1 ] ·

(
[ξWS(x)]

t
)

(6)

Hence, Eqn. 6 gives the direct relation between each of the Haar spectral
coefficients of n-variable Bent functions in terms of the Walsh coefficients.

Example 3.2. Considering the same function given in the previous example
then:

l = 1 ⇒
[
ξH(21−1)

]
= 21−1 · [WS21−1 ] · [P21−1 ] ·

[
ξWS(2

1−1)
]

= [WS20 ] · [P20 ] · [ξWS(1)] = [1] · [1] · [ξWS(1)]

= −4

l = 2 ⇒
[
ξH(2)
ξH(3)

]
= 2−1 · [WS21 ] · [P21 ] ·

[
ξWS(2)
ξWS(3)

]
= 2−1 ·

[
1 1
1 −1

]
·
[
ξWS(3)
ξWS(2)

]
= 2−1 ·

[
1 1
1 −1

]
·
[
−4
4

]
=

[
0
−4

]

l = 3 ⇒


ξH(4)
ξH(5)
ξH(6)
ξH(7)

 = 2−2 · [WS22 ] · [P22 ] ·


ξWS(4)
ξWS(5)
ξWS(6)
ξWS(7)



= 2−2 ·


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 ·

ξWS(7)
ξWS(6)
ξWS(5)
ξWS(4)



= 2−2 ·


0
16
0
0

 =


0
4
0
0



418 Malaysian Journal of Mathematical Sciences



i
i

i
i

i
i

i
i

Haar Spectrum of Bent Boolean Functions

l = 4 ⇒


ξH(8)

...

...
ξH(15)

 = 2−3 · [WS23 ] · [P23 ] ·


ξWS(8)

...

...
ξWS(15)



= 2−3 · [WS23 ] ·


ξWS(15)

...

...
ξWS(8)



= 2−3 ·



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


·



4
−4
−4
4
4
4
4
4


=



2
−2
0
0
2
2
0
0


The following section presents the conclusion of the paper.

4. Conclusion

In this paper we have presented a general Haar representation of Bent func-
tions. In the process, we have derived the representation of Haar spectral
coefficients both in terms of the individual coefficients, as well as in terms of
coefficients′ sub-intervals. The individual coefficients were derived and repre-
sented in terms of Walsh coefficients in Strict-sequency ordering for the Walsh
functions, while for the sub-interval representation, a general Haar spectral
transform representation was derived based on the Walsh orderings of both
Strict-sequency, Paley, and Hadamard. The Haar spectral characteristics are
reflected upon its local behavior in relation to the transformed function. One
important observation is that, the Walsh spectrum of Bent functions is flat in
terms of absolute magnitude for each spectral coefficient. On the other hand,
that same property is portrayed locally within the Haar spectral coefficients′
sub-intervals when such coefficients are considered together. This Haar spectral
characterization is intended for further explorations in determining the nonlin-
earity measure of a given Boolean function which in turn is part of an ongoing
work.
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